Lighting Impact Assessment
 Outdoor Signage at City-West Link, Lilyfield, NSW (Double Sided Portrait Pylon)

Electrolight Australia Pty Ltd
ABN: 44600067392

DATE	REV	COMMENT	PREPARED BY	CHECKED BY
$3 / 08 / 23$	REV E	For Information	NL	RS

1. INTRODUCTION 3
2. DEFINITIONS 3
2.1 Illuminance 3
2.2 Luminance 3
2.3 Luminous Intensity 3
2.4 Obtrusive Light 3
2.5 Threshold Increment 3
2.6 AGI32 Light Simulation Software 3
2.7 Upward Light Ratio (ULR) 3
3. SITE DESCRIPTION AND SCOPE 4
4. DESIGN GUIDELINES AND STANDARDS 4
5. LUMINANCE ASSESSMENT 5
6. AS4282 ASSESSMENT 7
7. SUMMARY 9
8. DESIGN CERTIFICATION 10
APPENDIX A 11
APPENDIX B 13
APPENDIX C 15
APPENDIX D 17

1. INTRODUCTION

Electrolight have been appointed by JCDecaux to undertake a Lighting Impact Assessment on the proposed portrait pylon digital signage at City-West Link, Lilyfield, NSW. The objective of the assessment is to report on compliance with the State Environmental Planning Policy (Industry and Employment) 2021, NSW Transport Corridor Outdoor Advertising and Signage Guidelines, and AS4282-2019 Control of the Obtrusive Effects of Outdoor Lighting.

2. DEFINITIONS

2.1 Illuminance

The physical measure of illumination is illuminance. It is the luminous flux arriving at a surface divided by the area of the illuminated surface. Unit: Iux (Ix); $1 \mathrm{~lx}=1 \mathrm{Im} / \mathrm{m} 2$.
(a) Horizontal illuminance (Eh) The value of illuminance on a designated horizontal plane
(b) Vertical illuminance (Ev) The value of illuminance on a designated vertical plane

Where the vertical illuminance is considered in the situation of potentially obtrusive light at a property boundary it is referred to as environmental vertical illuminance (Eve).

2.2 Luminance

The physical quantity corresponding to the brightness of a surface (e.g. a lamp, luminaire or reflecting material such as the road surface) when viewed from a specified direction. SI Unit: candela per square metre (cd/m2) - also referred to as "nits".

2.3 Luminous Intensity

The concentration of luminous flux emitted in a specified direction. Unit: candela (cd).

2.4 Obtrusive Light

Spill Light which, because of quantitative, directional or spectral attributes in a given context, gives rise to annoyance, discomfort, distraction or a reduction in the ability to see essential information.

2.5 Threshold Increment

The measure of disability glare expressed as the percentage increase in contrast required between a standard object and its background (the carriageway) for it to be seen equally as well with the source of glare present as with it absent, derived in the specified manner. This metric is directly related to Veiling Luminance.

NOTE: The required value is a maximum for compliance of the lighting scheme.

2.6 AGI32 Light Simulation Software

AGI32 (by U.S. company Lighting Analysts) is an industry standard lighting simulation software package that can accurately model and predict the amount of light reaching a designated surface or workplane. AGi32 is a has been independently tested against the International Commission On Illumination (CIE) benchmark, CIE 171:2006, Test Cases to Assess the Accuracy of Lighting Computer Programs.

2.7 Upward Light Ratio (ULR)

The ratio between the luminious flux emitted above the horizontal plane to the total flux emitted by a light source. The ULR is used as a measure to limit direct spill light to the sky.

3. SITE DESCRIPTION AND SCOPE

The proposed portrait pylon digital signage is located on City-West Link near Pretoria Street, Lilyfield, NSW. The proposed signage is comprised of two back to back digital screens, Face A and Face B. Face A is oriented towards the eastbound traffic on City-West Link and Face B is oriented towards the westbound traffic on City-West Link. The total active display (illuminated) area of each sign face is 14.16 m 2 . The digital signage is to be switched off from 11pm to 6am, and be switched on at all other times. Refer to Appendix A for proposed signage location plan and elevations.

The proposed digital signage is illuminated using LEDs installed within the front face. The brightness of the LEDs shall be controlled to provide upper and lower thresholds as required as well as automatically via a local light sensor to adjust to ambient lighting conditions.

For the purpose of this report the proposed manufacturer of the digital signage is noted as Big Screen Video model type YH-DT6-HB1-J with performance parameters as outlined in Appendix B. The signage includes baffles which mitigate upward waste light, resulting in an Upward Light Ratio (ULR) of less than 50%. Alternative digital sign manufacturers may be used for this installation as long as they have equivalent lighting and performance characteristics and are commissioned as described in this report.

4. DESIGN GUIDELINES AND STANDARDS

The Lighting Impact Assessment will review the proposed digital signage against the following Criteria, Design Guidelines and Standards.

- State Environmental Planning Policy (Industry and Employment) 2021 (Refer Appendix C)
- Transport Corridor Outdoor Advertising \& Signage Guidelines 2017
- AS 4282-2019 Control of the Obtrusive Effects of Outdoor Lighting

5. LUMINANCE ASSESSMENT

Face A Assessment

The maximum permissible night time luminance of the signage is determined by the existing lighting environment of its surroundings. AS4282 outlines maximum average luminances for different Environmental Zones as shown in Table 1 below:

TABLE 1 - MAXIMUM NIGHT TIME AVERAGE LUMINANCE FOR SIGNAGE		
Environmental Zone	Description	Max Average Luminance (cd/m2)
A4	High district brightness e.g. Town and city centres, commercial areas, and residential areas abutting commercial areas	350
A3	Medium district brightness e.g. suburban areas in towns and cities	250
A2	Low district brightness e.g. sparsely inhabited rural and semi- rural areas	150
A1	Dark e.g. relatively uninhabited rural areas. No Road Lighting A0Intrinsically Dark e.g. Major Optical Observatories. No Road Lighting	0.1

Note: Where the signage is viewed against a predominantly dark background (e.g. night sky) then the maximum applicable environmental zone is A2

Based on an assessment of the surrounding environment, Face A of the proposed signage is located within Environmental Zone A3 under AS4282, therefore the maximum night time luminance is 250 $\mathrm{cd} / \mathrm{m} 2$.

AS4282 does not include limits for daytime operation of illuminated signage. However, the Transport Corridor Outdoor Advertising \& Signage Guidelines outlines maximum permissible luminance limits for various lighting conditions, including daytime. Under the Guidelines, Face A of the proposed signage is classified as being within Zone 4, which is described as an area with generally low levels of off-street ambient lighting, e.g. most rural areas, or areas that have residential properties nearby. The maximum night time luminance of a digital signage within Zone 4 is $200 \mathrm{~cd} / \mathrm{m} 2$.

Table 2 outlines the maximum luminance levels to comply with AS4282 and the Transport Corridor Outdoor Advertising \& Signage Guidelines for the various lighting conditions listed below:

TABLE 2 - LUMINANCE LEVELS FOR DIGITAL ADVERTISEMENTS (FACE A)

Lighting Condition	Max Permissible Luminance (cd/m2)*	Compliant
Full Sun on face of Signage	No Limit	
Day Time Luminance (typical sunny day)	6000	
Morning and Evening Twilight and Overcast Weather	500	
Night Time	54^{*}	

\# The signage is to be dimmed on site to ensure the maximum luminance nominated above is not exceeded.

* The maximum permissible luminance allowable under both AS4282 and the Department of Transport is actually 200 $\mathrm{cd} / \mathrm{m} 2$. The luminance limit shown above was derived as a result of the calculation and assessment in Section 5 and 6, to ensure compliance with other criteria of AS4282 and any additional lighting requirements as described in this report.

Face A of the proposed digital signage has a maximum brightness (luminance) of $6000 \mathrm{~cd} / \mathrm{m} 2$. The screen shall be commissioned on site to yield a maximum screen luminance of $6000 \mathrm{~cd} / \mathrm{m} 2$ when full sun strikes the face of the sign (maximum brightness) and $6000 \mathrm{~cd} / \mathrm{m} 2$ during normal daytime operation, $500 \mathrm{~cd} / \mathrm{m} 2$ during twilight and inclement weather and $54 \mathrm{~cd} / \mathrm{m} 2$ during night time.

Face B Assessment

The maximum permissible night time luminance of the signage is determined by the existing lighting environment of its surroundings. AS4282 outlines maximum average luminances for different Environmental Zones as shown in Table 3 below:

TABLE 3 - MAXIMUM NIGHT TIME AVERAGE LUMINANCE FOR SIGNAGE		
Environmental Zone	Description	Max Average Luminance (cd/m2)
A4	High district brightness e.g. Town and city centres, commercial areas, and residential areas abutting commercial areas	350
A3	Medium district brightness e.g. suburban areas in towns and cities	250
A2	Low district brightness e.g. sparsely inhabited rural and semi- rural areas	150
A1	Dark e.g. relatively uninhabited rural areas. No Road Lighting	0.1
A0	Intrinsically Dark e.g. Major Optical Observatories. No Road Lighting	0.1

Note: Where the signage is viewed against a predominantly dark background (e.g. night sky) then the maximum applicable environmental zone is A2.

Based on an assessment of the surrounding environment, Face B of the proposed signage is located within Environmental Zone A3 under AS4282, therefore the maximum night time luminance is 250 $\mathrm{cd} / \mathrm{m} 2$.

AS4282 does not include limits for daytime operation of illuminated signage. However, the Transport Corridor Outdoor Advertising \& Signage Guidelines outlines maximum permissible luminance limits for various lighting conditions, including daytime. Under the Guidelines, Face B of the proposed signage is classified as being within Zone 4, which is described as an area with generally low levels of off-street ambient lighting, e.g. most rural areas, or areas that have residential properties nearby. The maximum night time luminance of a digital signage within Zone 4 is $200 \mathrm{~cd} / \mathrm{m} 2$.

Table 4 outlines the maximum luminance levels to comply with AS4282 and the Transport Corridor Outdoor Advertising \& Signage Guidelines for the various lighting conditions listed below:

TABLE 4 - LUMINANCE LEVELS FOR DIGITAL ADVERTISEMENTS (FACE B)		
Lighting Condition	Max Permissible Luminance (cd/m2)*	Compliant
Full Sun on face of Signage	No Limit	
Day Time Luminance (typical sunny day)	6000	
Morning and Evening Twilight and Overcast Weather	500	
Night Time	200	

\# The signage is to be dimmed on site to ensure the maximum luminance nominated above is not exceeded.

Face B of the proposed digital signage has a maximum brightness (luminance) of $6000 \mathrm{~cd} / \mathrm{m} 2$. The screen shall be commissioned on site to yield a maximum screen luminance of $6000 \mathrm{~cd} / \mathrm{m} 2$ when full sun strikes the face of the sign (maximum brightness) and $6000 \mathrm{~cd} / \mathrm{m} 2$ during normal daytime operation, $500 \mathrm{~cd} / \mathrm{m} 2$ during twilight and inclement weather and $200 \mathrm{~cd} / \mathrm{m} 2$ during night time.

6. AS4282 ASSESSMENT

The proposed signage (Face A \& Face B) has been assessed against AS 4282-2019 Control of the Obtrusive Effects of Outdoor Lighting as outlined in Section 4.

AS4282 provides limits for different obtrusive factors associated with dark hours (night time) operation of outdoor lighting systems. Two sets of limiting values for spill light are given based on whether the lighting is operating before a curfew (known as "pre-curfew" operation) or operating after a curfew (known as post-curfew or curfewed operation). Pre-curfew spill lighting limits are higher than post-curfew values, on the understanding that spill light is more obtrusive late at night when residents are trying to sleep. Under AS4282, the post-curfew period is taken to be between 11pm and 6am daily. As the signage is to be operated from 6am to 11pm, the signage will be assessed against the pre-curfew limits.

Illuminance Assessment - Face A \& Face B

The AS4282 assessment includes a review of nearby residential dwellings and calculation of the amount of illuminance (measured in Lux) that the properties are likely to receive cumulatively from both Face A and Face B of the signage during night time operation.

The acceptable level of illuminance will in part be determined by the night time lighting environment around the dwellings. AS4282 categorises the night time environment into different zones with maximum lighting limits as shown in Table 5 below:

TABLE 5-MAXIMUM VALUES OF LIGHT TECHNICAL PARAMETERS			
Environmental Zone	Max Vertical Illuminance (Ix)		Description
	Pre-curfew	Post-curfew	
A1	2	0	Intrinsically Dark e.g. Major Optical Observatories. No Road Lighting
A2	5	0.1	Dark e.g. relatively uninhabited rural areas. No Road Lighting
A3	10	1	Low district brightness e.g. sparsely inhabited rural and semi-rural areas
A4	25	5	Medium district brightness e.g. suburban areas in towns and cities

In undertaking the assessment, vertical illuminance calculation grids were located at the "Building Line" of the potentially affected existing dwellings. The Building Line is defined as that which contains (or may contain) windows into habitable rooms. The height of the calculation grids on the existing dwellings, has as a minimum, be taken from the bottom of the lowest window of the habitable rooms to the the top of the highest window of the habitable rooms, in accordance with AS4282.

Based on an assessment of the surrounding areas, the nearest potentially affected dwellings with views to Face A are the following locations:

Address	Zone
92 Brenan Street	A3
94 Brenan Street	A3
50 Helen Street	A3
24 Pretoria Street	A3

The nearest potentially affected dwellings with views to Face B are the following locations:

Address	Zone
66 Brenan Street	A3
68 Brenan Street	A3
70 Brenan Street	A3
$97-99$ Lilyfield Road	A3
$101-103$ Lilyfield Road	A3
105 Lilyfield Road	A3

Address	Zone
107-109 Lilyfield Road	A3
24 Trevor Street	A3
27 Trevor Street	A3
21 Pretoria Street	A3
24 Russell Street	A3

As such, the dwellings above will form the focus of the illuminance assessment. The signage (and surrounding environment) was modelled in lighting calculation program AGI32 to determine the effect (if any) of the light spill from the signage. Photometric data for the screen was provided by the screen manufacturer*, with the maximum luminance corresponding to the night time limits outlined in Section 5 for each sign face. Appendix D shows the lighting model and the results of the calculations.

It should be noted that some of the houses are shielded by retaining walls, fences or mature vegetation, which effectively obstructs the spill light of the signage. However calculations were undertaken assuming that there were no obstructions present.

It can be seen from the lighting model the maximum illuminance to dwellings as a result of Face A is 0.8 lux at 24 Russell Street and Face B is 1.6 lux at 21 Pretoria Street. This illuminance level complies with the maximum AS4282 limit of 10 lux outlined in Table 5.

Threshold Increment Assessment

The Threshold Increment was also calculated for the traffic approaches on City-West Link (for both eastbound and westbound directions) and the lightrail (for both eastbound and westbound directions). The calculation grids were located at 1.5 m above ground level for general traffic approaches and at 2 m above ground level for the lightrail approaches. The approach viewing distance was between 5 m to 200 m from the sign for all approaches. The calculation results show that the Threshold Increment does not exceed 18.96\% for any traffic approach (the allowable maximum under the standard is 20%).

Luminous Intensity

The luminous intensity limits nominated in the standard are not applicable for internally illuminated signage.

Additional Requirements:

The signage operator must ensure that the average luminance difference between successive images does not exceed 30% to ensure compliance with AS4282. The dwell time shall be 10 seconds or greater.

Summary

It can therefore be seen that the proposed digital signage (Face A \& Face B) complies with all relevant requirements of AS 4282-2019 Control of the Obtrusive Effects of Outdoor Lighting.

* Electrolight takes no responsibility for the accuracy of third party provided photometric data.
- Face A to be installed on City-West Link, Lilyfield, NSW, shall be commissioned on site to yield the following maximum luminances:

LUMINANCE LEVELS FOR DIGITAL ADVERTISEMENTS (FACE A)		
Lighting Condition	Max Permissible Luminance (cd/m2)	Compliant
Full Sun on face of Signage	No Limit	
Day Time Luminance (typical sunny day)	6000	
Morning and Evening Twilight and Overcast Weather	500	
Night Time	54	

- Face B to be installed on City-West Link, Lilyfield, NSW, shall be commissioned on site to yield the following maximum luminances:

LUMINANCE LEVELS FOR DIGITAL ADVERTISEMENTS (FACE B)		
Lighting Condition	Max Permissible Luminance (cd/m2)	Compliant
Full Sun on face of Signage	No Limit	
Day Time Luminance (typical sunny day)	6000	
Morning and Evening Twilight and Overcast Weather	500	
Night Time	200	

- The signage operator must ensure that the average luminance difference between successive images does not exceed 30% to ensure compliance with AS4282. The dwell time shall be 10 seconds or greater in order to comply with the requirements of AS4282.
- The proposed signage (Face A \& Face B) has been found to comply with all relevant requirements of AS 4282-2019 Control of the Obtrusive Effects of Outdoor Lighting.
- In complying with the above requirements, the proposed signage (Face A \& Face B) shall not result in unacceptable glare nor should it adversely impact the safety of pedestrians, residents or vehicular traffic. Additionally, the signage shall not cause any reduction in visual amenity to nearby residences or accommodation.

8. DESIGN CERTIFICATION

The proposed portrait pylon digital signage (Face A \& Face B) to be installed on City-West Link, Lilyfield, NSW, if commissioned according to this report, complies with the following criteria, guidelines and standards:

- State Environmental Planning Policy (Industry and Employment) 2021 (Refer Appendix C)
- Transport Corridor Outdoor Advertising \& Signage Guidelines 2017
- AS 4282-2019 Control of the Obtrusive Effects of Outdoor Lighting

Ryan Shamier MIES
M.Des.Sc(Illumination) B.Eng (Elec)

Member of the Illuminating Engineering Society of Australia and New Zealand (MIES)
Registered Professional Engineer - New South Wales (PRE0000868)

Senior Lighting Designer
Electrolight Sydney
3/08/23

APPENDIX A

SIGNAGE LOCATION

APPENDIX A
SIGNAGE LOCATION

APPENDIX B
DIGITAL SIGNAGE SPECIFICATION

APPENDIX B

DIGITAL SIGNAGE SPECIFICATION

State Environmental Planning Policy (Industry and Employment) 2021

Schedule 5 Assessment criteria

(Clauses 8, 13 and 17)

1. Character of the area

- Is the proposal compatible with the existing or desired future character of the area or locality in which it is proposed to be located?
- Is the proposal consistent with a particular theme for outdoor advertising in the area or locality?

2. Special areas

- Does the proposal detract from the amenity or visual quality of any environmentally sensitive areas, heritage areas, natural or other conservation areas, open space areas, waterways, rural landscapes or residential areas?

3. Views and vistas

- Does the proposal obscure or compromise important views?
- Does the proposal dominate the skyline and reduce the quality of vistas?
- Does the proposal respect the viewing rights of other advertisers?

4. Streetscape, setting or landscape

- Is the scale, proportion and form of the proposal appropriate for the streetscape, setting or landscape?
- Does the proposal contribute to the visual interest of the streetscape, setting or landscape?
- Does the proposal reduce clutter by rationalising and simplifying existing advertising?
- Does the proposal screen unsightliness?
- Does the proposal protrude above buildings, structures or tree canopies in the area or locality?
- Does the proposal require ongoing vegetation management?

5. Site and building

- Is the proposal compatible with the scale, proportion and other characteristics of the site or building, or both, on which the proposed signage is to be located?
- Does the proposal respect important features of the site or building, or both?
- Does the proposal show innovation and imagination in its relationship to the site or building, or both?

6. Associated devices and logos with advertisements and advertising structures

- Have any safety devices, platforms, lighting devices or logos been designed as an integral part of the signage or structure on which it is to be displayed?

7. Illumination

- Would illumination result in unacceptable glare?
- Would illumination affect safety for pedestrians, vehicles or aircraft?
- Would illumination detract from the amenity of any residence or other form of accommodation?
- Can the intensity of the illumination be adjusted, if necessary?
- Is the illumination subject to a curfew?

8. Safety

- Would the proposal reduce the safety for any public road?
- Would the proposal reduce the safety for pedestrians or bicyclists?
- Would the proposal reduce the safety for pedestrians, particularly children, by obscuring sightlines from public areas?

APPENDIX D

OBTRUSIVE LIGHTING CALCULATIONS

Calculation Summary			
Project: Obtrusive			
Label	CalcType	Units	Max
101-103 Lilyfield Rd_Ill_Seg1	Obtrusive - Ill	Lux	0.0
101-103 Lilyfield Rd_Ill Seg2	Obtrusive - Ill	Lux	0.0
105 Lilyfield Rd_Ill_Seg1	Obtrusive - Ill	Lux	0.1
105 Lilyfield Rd Ill Seg2	Obtrusive - Ill	Lux	0.0
107-109 Lilyfield Rd_Ill_Seg1	Obtrusive - Ill	Lux	0.0
107-109 Lilyfield Rd_Ill_Seg2	Obtrusive - Ill	Lux	0.0
21 Pretoria Street_Ill_Seg1	Obtrusive - Ill	Lux	0.1
21 Pretoria Street_Ill_Seg2	Obtrusive - Ill	Lux	1.6
24 Pretoria Street_Ill_Seg1	Obtrusive - Ill	Lux	0.3
24 Pretoria Street_Ill_Seg2	Obtrusive - Ill	Lux	0.1
24 Russell Street_Ill_Seg1	Obtrusive - Ill	Lux	0.8
24 Russell Street_Ill_Seg2	Obtrusive - Ill	Lux	0.0
24 Trevor St_Ill_Seg1	Obtrusive - Ill	Lux	0.0
24 Trevor St_Ill_Seg2	Obtrusive - Ill	Lux	0.0
27 Trevor St_Ill_Seg1	Obtrusive - Ill	Lux	0.0
27 Trevor St_Ill_Seg2	Obtrusive - Ill	Lux	0.0
50 Helen St_Ill_Seg1	Obtrusive - Ill	Lux	0.0
50 Helen St_Ill_Seg2	Obtrusive - Ill	Lux	0.0
50 Helen St_Ill_Seg3	Obtrusive - Ill	Lux	0.0
66 Brenan Street_Ill_Seg1	Obtrusive - Ill	Lux	0.3
66 Brenan Street_Ill_Seg2	Obtrusive - Ill	Lux	0.0
68 Brenan Street_Ill_Seg1	Obtrusive - Ill	Lux	0.0
70 Brenan Street_Ill_Seg1	Obtrusive - Ill	Lux	0.3
70 Brenan Street_Ill_Seg2	Obtrusive - Ill	Lux	0.0
92 Brenan Street_Ill_Seg1	Obtrusive - Ill	Lux	0.2
94 Brenan Street_Ill_Seg1	Obtrusive - Ill	Lux	0.1
97-99 Lilyfield Rd_Ill_Seg1	Obtrusive - Ill	Lux	0.0
97-99 Lilyfield Rd_Ill_Seg2	Obtrusive - Ill	Lux	0.0

APPENDIX D

THRESHOLD INCREMENT CALCULATIONS

Calculation Summary				
Project: TI	CalcType	Units	Max	
Label	Obtrusive - TI	$\%$	18.96	
City-West Link (eastbound)	Obtrusive - TI	$\%$	4.98	
City-West Link (westbound)	Obtrusive - TI	$\%$	0.27	
Lightrail (easttbound)	Obtrusive - TI	$\%$	2.43	
Lightrail (westbound)				

APPENDIX D

OBTRUSIVE LIGHTING AND THRESHOLD INCREMENT CALCULATIONS

Obtrusive Light - Compliance Report
AS/NZS 4282:2019, A3 - Medium District Brightness, Non-Curfew L1
Filename: 1096.113 City-West Link, Lilyfield, NSW rev D 3/08/2023 3:52:38 PM

Illuminance

Maximum Allowable Value: 10 Lux

Calculations Tested (28):		
	Test	Max.
Calculation Label	Results	Illum.
94 Brenan Street_III_Seg1	PASS	0.1
92 Brenan Street_III_Seg1	PASS	0.2
24 Pretoria Street_III_Seg1	PASS	0.3
24 Pretoria Street_III_Seg2	PASS	0.1
70 Brenan Street_III_Seg1	PASS	0.3
70 Brenan Street_III_Seg2	PASS	0.0
68 Brenan Street_III_Seg1	PASS	0.0
66 Brenan Street_III_Seg1	PASS	0.3
66 Brenan Street_III_Seg2	PASS	0.0
50 Helen St_III_Seg1	PASS	0.0
50 Helen St_III_Seg2	PASS	0.0
50 Helen St_III_Seg3	PASS	0.0
27 Trevor St_III_Seg1	PASS	0.0
27 Trevor St_III_Seg2	PASS	0.0
24 Trevor St_III_Seg1	PASS	0.0
24 Trevor St_III_Seg2	PASS	0.0
107-109 Lilyfield_Rd_III_Seg1	PASS	0.0
107-109 Lilyfield Rd_III_Seg2	PASS	0.0
105 Lilyfield Rd_III_Seg1	PASS	0.1
105 Lilyfield Rd_III_Seg2	PASS	0.0
101-103 Lilyfield_Rd_III_Seg1	PASS	0.0
101-103 Lilyfield Rd_III_Seg2	PASS	0.0
97-99 Lilyfield Rd_III_Seg1	PASS	0.0
97-99 Lilyfield Rd_III_Seg2	PASS	0.0
21 Pretoria Street_III_Seg1	PASS	0.1
21 Pretoria Street_III_Seg2	PASS	1.6
24 Russell Street_III_Seg1	PASS	0.8
24 Russell Street_III_Seg2	PASS	0.0

Threshold Increment (TI)

Maximum Allowable Value: 20 \%
Calculations Tested (4):

Calculation Label	Adaptation LuminanceRest	
Lightrail (easttbound)	1	PASS
Lightrail (westbound)	1	PASS
City-West Link (westbound)	1	PASS
City-West Link (eastbound)	1	PASS

